Lunex - Chapter 5

Lunex Chart I - A




This section of the Lunar Expedition Program Plan (Lunex) includes estimated personnel requirements to support the program and presents the training required to accomplish the end objective.

The personnel requirements were derived on the basis of the scope of the complete program and the personnel would be comprised of civilian and military personnel. .

The training program was prepared by the Air Training Command and based on the Lunar Expedition Program Plan.


The accomplishment of the Lunar Expedition Program will have a manpower impact on the Air Force that is quite different than previous programs. The number of personnel actually on the expedition will be relatively small compared to the number of personnel required to support the operation. The actual contractor "in-plant" personnel required to accomplish this program are not included in the following figures. However, a general estimate of the total contractors' effort, based on the average estimated annual expenditure for the complete Lunex program, would be the equivalent of one of our larger manufacturing companies with 60 to 70 thousand personnel. It should also be stated that this effort would undoubtedly be spread throughout the industry and not concentrated in one company and the previous statement is only for comparison.

The military and civilian personnel required to support the Lunex program is estimated as follows:

Space Personnel: 145

  • Lunar Expedition (21 men at expedition facility, crew rates of 5): 145
Ground Personnel: 3677
  • Lunar Squadron: 100
  • Launch Squadron: 873
  • Instrumentation Squadron: 293
  • Assembly & Maintenance Squadron: 860
  • Supply Squadron: 562
  • Base Support Units: 639
  • Administration: 350
Total Direct Personnel (Space plus Ground): 3822

Overhead: 1287

  • Range Tracking: 940
  • Logistic Support Organisation: 347
Grand Total Personnel: 5109


The remaining portion of this section of the Lunar Expedition Program Plan (Lunex) presents the Training Program. It is based on the limited data and information available at the time of preparation. The knowledge gained from the state-of-the art development of this program will of necessity have to be applied directly to the training areas to insure "concurrency" of the programs training development. Further, the training knowledge and experience acquired from current research and development programs must be studied for application to this program.

The concepts and plane projected in this part of the PSPP will be subject to constant revision and/or updating. Use of various simulators and synthetic training devices must be a part of the training program. Identification of the required training equipment and real property facilities to house them must be accomplished early in the program development to insure training equipment and facilities being available to meet the training need dates.

The unique mission of the Lunex program requires a comprehensive and timely source of personnel equipment data (PED). This information is required for space crew end support positions required to operate and maintain the space vehicles and support equipment. Development of such data must be initiated as part of the design effort to reduce the time element for follow-on personnel sub-system requirements. 

No effort is made in this section to specify requirements for the Space Launching System since they are delineated in the Space Launching System Package Program.

This section of the Proposed System Package Program was developed under the premise that Air Training Command would be assigned the individual aerospace crew and technical training responsibilities for this program. Therefore, ATC must develop their capability concurrent with hardware development through the engineering design phases to support the expedition.


a. Scope:

This section is conceptual in nature at this time and embodies the basis for the training to be accomplished in support of the Lunar Expedition Program. It includes guidance for individual, field unit, and crew training.

b. Definitions:

(1) Aerospace Crew Personnel:

Personnel performing crew duty in the Lunar Transport Vehicle.

(2) Cadre Personnel:

Those personnel necessary for logistic planning, AFR 80-14 Testing Programs, and ATC instruction and preparation of training materials. The requirements for participation in the testing programs will include test instruments for category testing in accordance with paragraph 5 a (1) and (2), AFR 80-14, and Job Training Standards for the Integrated Systems Testing Program in accordance with paragraph 8 g (3), AFR 80-14.

(3) Main Complement Personnel:

Personnel employed in the receipt, check-out, installation, repair, maintenance and operation of the system.

(4) Support Personnel:

Air Force Logistic Commend personnel required for support functions as well as other agencies' supervisors and planners

(5) Types of Training:

(a) Type I (Contract Special Training). Special training courses conducted by contractors at an ATC installation, contractor facility or any other designated site.

(b) Type II. (ATC Special Training) Special Training Courses conducted by ATC training centres' instructors at an ATC installation, contractor facility, or any other designated site.

(c) Type III. Career training/ 

(d) Type IV. Special training provided by ATC training detachment instructors at the site or the organisation requiring the training.

(6) Testing Programs:

(a) Component - the testing of the components of a sub-system, such as the guidance package, or ecological package.

(b) Sub-system - components assembled into a sub-system, such as the Re-Entry Vehicle Subsystem and tested as a unit.

(c) Integrated System - the Re-Entry Vehicle, Lunar Launching Stage and Lunar Landing Stage assembled together and tested as a whole system.

c. Assumptions.

(1) The man-rated Lunar Transport Vehicle will be available for use by the Lunar Expedition in 1968.

(2) ATC personnel will observe, participate and study the training programs developed for current research and development programs conducted under other government agencies and/or contractors.

(3) AFR 80-14 will be used as a guide for accomplishing the program testing.

(4) The terminology for normal levels of maintenance, i.e., organisational, field, depot, and shop, vehicle assembly and maintenance as specified in AFLC (AMC) letter MCM, dated 25 July 1960, subject: Standard Maintenance Terms and Maintenance Facility Nomenclature for Missile Weapon Systems will apply.

(5) The Air Force Maintenance policy of maximum maintenance at the lowest feasible level will prevail.

(6) Due to the time phasing of the subsystems, special consideration must be given to the training facilities requirements funding for the Re-Entry Vehicle technical training programs.

(7) Testing Dates:

(a) Start of Component Testing Dates are:

1. Re-Entry Vehicle - June 1963.

2. Lunar Launch Stage - February 1965.

3. Lunar Landing Stage - May 1965.

(b) Start of Subsystem Testing Dates are:

1. Re-Entry Vehicle - November 1964.

2. Lunar Launch Stage - May 1966.

3. Lunar Landing Stage - July 1966.

d. Peculiar Requirements and/or Limitations:

(1) The unique mission of this program makes it mandatory that the following actions be accomplished concurrent with the development of the hardware:

(a) The contractors will develop the Personnel Equipment Data information concurrent with the design of the hardware. This is information must be available to ATC personnel for early planning purposes.

(b) Type I training dates reflected in the time phasing chart will require the use of R&D and test equipment as training equipment.

(c) Production schedules for R&D and Expedition equipment will include the training equipment required to support Type II and Type III training. Allocation and delivery priorities will be in accordance with AFR 67-8.

(2) An identification of personnel necessary to support this system has been made in order to assist in defining the training parameters. Changes to these estimates will he made as more conclusive information becomes available. See Charts IX A and B.

(3) Maximum Cross-Training will be provided as required to all personnel associated with this program.

(4) The requirement for follow-on training and the value of past experience is recognised and maximum retention of personnel is mandatory.

(5) New and peculiar training problems are envisioned for the technical personnel

(6) The training of the aerospace crew personnel will require the development of a program which is unique to the Air Force.

e. Qualitative and Quantitative Personnel Requirements Information

(1) A QQPRI prepared in accordance with Mil Spec 26239A will be required to develop the training courses, course material and substantiation for the Personnel Classification changes.

(2) ATC and other applicable commands will furnish personnel for the QQPRI integration team and provide technical guidance to the contractor during preparation.


a. Training Responsibilities and Concepts:

(1) Engineering Design Effort

(a) ATC will participate in the engineering design effort to insure that technical data is collated with the personnel sub-system for follow-on training program requirements.

(b) ATC will be responsible for training required in support, of the R&D effort under AFR 50-9.

(c) Selection of the initial aerospace crew personnel and ATC aerospace crew training instructors for the Lunar Transport Vehicle will commence 8 months prior to the start of Category I Testing.

(d) All Lunar Transport Vehicle crews and military space launching support personnel will be phased into special training (Type I), 6 months prior to Category I Testing.

(e) Environmental, space training for the selected crews and instructor personnel will start 9 months prior to the start of Category II testing and will be conducted by the Aerospace Medical Centre, Brooks AFB, Texas.

(f) ATC Lunar Transport Vehicle crews will be phased out of training 30 days prior to the requirement for Type II or III aerospace crew training to provide follow-on training capability in this area.

(2) Flight Testing & Expedition Program:

(a) ATC will be responsible for all individual training, i.e., technical, aerospace crew, AGE and addition job tasks as required.

(b) All requirements for Type I Special Training, AFR 50-9, in support of this effort will be contracted for by ATC.

(c) ATC will maintain liaison with the contractor concerning engineering changes in the program during its development to keep trainee information in consonance with the program / sub-program configurations and other concepts having a direct implication to training.

(d) Flight Testing & Expedition Crew proficiency will be the responsibility of the Lunex Program Director unless ATC is requested to furnish this training.


a. Field Training Detachment (FTD)

The number of personnel required to provide training for lunar vehicle personnel will be determined during the training programming conference. QQPRI, TPR's, Personal Plan, Operational Plan and Maintenance Plan will be available at this time.

b. Contractor Technical Service Personnel (AFR 66-18)

Contractor technical service personnel may be initially required to augment Field Training Detachment (FTD) personnel. CTSP requirements in support of this program will be phased out as blue suit capability is achieved.

c. Trained Personnel Requirements (TPR)

TPR will be developed by commands concerned upon approval of QQPRI, and will be tabulated as gross requirements by command, by AFSC, and by fiscal quarter. These requirements will be phased on anticipated need dates for personnel to be in place at the testing sites, launch sites, and maintenance areas, and will be furnished Hq ATC in sufficient time to allow proper planning for required training.


a. General:

Training equipment requirements will be developed to support:

(1) Check-out and ground maintenance to be performed by the direct support personnel for the Lunar Transport Vehicle.

(2) Flight test operations and maintenance to be performed by the responsible crews. In consideration of this, present and near future systems experience gained in the aerospace area will be applied to the Lunex program to assist in the identification of training equipment. The training for this program must be conducted in the most realistic environment practicable.

(3) Post mission maintenance and test equipment.

b. Equipment Selection:

Selection of training equipment will be based on the following general rules:

(1) Maximum utilisation will be made of training equipment programmed for other missile and space system training programs.

(2) During the initial phases, equipment programmed for test, development, and the expedition programs will be used to the maximum extent practicable when regular training periods can positively be scheduled in the use of that equipment' The lack of availability of such equipment will result in degradation of training.

(3) Equipment selection will be made in consideration of future and/or subsequent programs to provide maximum training capability in similar systems with minimum cost.

(4) Maximum use and development of training films, training graphics, and synthetic training aids and devices will be made to reduce requirements for critical operational items during the initial phases of the program.

(5) Training equipment will be identified in sufficient time to enable procurement and delivery in advance of equipment for use in the flight test and expedition program.

c. Planning Factors:

Planning factors for determination of Training Equipment Requirements:

(1) In view of the limited program information presently available, definitive planning factors upon which over equipment requirements may be based cannot be provided. However, for preliminary planning, the following factors may be applied to subsystems of the program to determine order of magnitude. Provided Control Centres used for other space vehicles will be applicable to the Lunar Transport Vehicle, Category I (Trainers), Category II (Parts / Components / End Items), and Category III (Training Aids / accessories) training equipment requirements as specified in USAF letter dated 30 January 1961, subject: Weapon System Training Equipment Support Policy will be as follows:

Major Vehicle Sections: Percent of Sub-System Cost Required for Training Items

(a) Re-entry Vehicle: 250%

  • Complete R/V - 1 ea
  • Sub-systems of R/V - 1 ea
  • Major components of each sub-system for Bench Items - 1 ea



(b) Lunar Launch Stage 150%
  • Sub-systems of Launch Stage - 1 ea.
  • 50% of Major Components for Bench Items



(c) Lunar Lending Stage: 100%
  • Major Components - 1 ea



Cargo Package: 100%
  • Complete Cargo Package



(e) Aerospace Ground Equipment: 200%
  • Complete set for handling and testing vehicle sections and included equipment
  • Complete set as bench items for maintenance training



(2) Training films and transparencies requirements will be developed as soon as possible.

(3) Spare parts support will be required for all Category I and II training equipment.

(4) A continuing requirement will exist for the modification of training equipment. These modifications should be provided by review and processing of training equipment change proposals concurrent with operational equipment charge proposals.

(5) Funding of P-400 money will be omitted in consonance with AFR 375-4, Para. 12.


a. General:

The needs for training facilities should be established approximately three years prior to the dates at which Type II training equipment will be required. Facilities must incorporate sufficient flexibility to accommodate future updating of training equipment resulting from program configuration changes.

b. Aerospace Crew Training Facilities: 

(1) Initial training for aerospace crew personnel will require the use of existing space training facilities. Joint Use Agreements between NASA and other USAF agencies and the Air Training Command will be required to insure maximum utilisation of these facilities. Aerospace Medical Centre's facilities (Brooks AFB, Texas) will be utilised to the fullest. Interservice agreements with the Navy for use of specific training device facilities should be considered for crew training.

(2) The establishment of a centralised space training facility would have a direct bearing on the overall specific requirements for this type of training. The results of the System Study Directive (SSD) Nr 7990-17610, titled: "Centralised Space Training Facility," will have direct bearing on the posture of the training facilities of the future. For this reason, facilities requirements for follow-on training are not projected.

c. Other Training Facilities:

It is anticipated that Technical Training Centres now in existence can absorb the additional technical training load without increasing the facilities. However, modification of existing facilities to provide training laboratories with specialised power and environmental systems will be necessary. This requirement must be identified in sufficient time to permit facility programming through normal procurement cycles.


a. Training Equipment Costs

Funding will be required for training equipment identified in Section 9.6, Training Equipment Package.

b. Training Facilities Costs

Funding and costs of training facilities will be determined once the decision is made whether to build a Centralised Space Training Facility or to continue with decentralised procedures. Funding can then be determined for the required facilities and modifications.



1. The estimates for the launch system are not included in view of the status of the Space Launching System (SLS) study. It can, however, be estimated that the launch complex personnel utilised in both the liquid/solid propellant type boosters will be integrated into a team for support of this system.

2. At such time as the S.L.S. is designated as the primary launch support system, a PSPP will be made for the launch vehicle and support AFSC's as a part of this program.



The purpose of this section of the program plan is to estimate the foreign threat in terms of technical capabilities and probable programs which may affect the establishment of a lunar expedition. The threat will be defined in terms of major performance capability and dates of operational availability.

10.1 Foreword

The following data was obtained from DCS/Intelligence, Hq ARDC, and published intelligence estimates.


The Soviets have flown geophysical and component equipment payloads on their vertical rockets for the development, modification, and acceptance testing of instrumentation for use on their satellite and lunar aircraft. They developed and used complex scientific instrumentation on Sputnik III, and stabilisation, orientation and control equipment on Lunik III and Sputnik IV. Presently, by using their vertical rockets, the Soviets are testing infrared equipment, in addition to collecting data on the background noise level of the earth's surface. It is believed that a development program exists which eventually could lead to detection and reconnaissance satellites. The development program which led to the photographic system used in Lunik III is expected to continue, with an eventual application in photographic reconnaissance and weather satellites.

The Soviet space launch capability is shown in the following table of Sputnik and Lunik booster thrust levels:

  • Sputnik I: 300,000 pounds
  • Sputnik II: 300,000 pounds
  • Sputnik III: 432,000 pounds 
  • Lunik I, II, and III: 456,000 pounds
  • Lunik IV, V, and VI: 466,600 pounds



There is also evidence of a cluster of five 140,000 pound units. The Soviets are developing engines of 1 to 2 1/2 million pounds thrust. The estimated time for a booster to match this engine is as follows:
  • Single engine booster: 1963 
  • Clustered engine booster: 1965



In general, it takes approximately half the time for development required in the US

The maximum Soviet orbit capability, with present ICBM boosters using five (140,000 pound thrust) engines and four (6,600 pound thrust) engines is 10,000 pounds in low altitude orbit. All Lunik and Sputnik vehicles utilised a third stage having 12,500 pound thrust engine burning for approximately 420 seconds.

By using higher energy chemical propellants in modified upper stages, the payload can be increased up to 15,000 or 20,000 pounds during 1961. However, approximately 50,000 pounds of payload may be attained by 1962 if ICBM launch vehicle thrust is increased.

In the 1965-1970 period, a new clustered chemical booster should allow the Soviets to place 50 to 100 tons in orbit in individual launches. This will permit landing a man on the moon.


Very early the Soviets realised the propaganda value obtainable from space adventures and, accordingly, have striven continuously for "firsts". This has apparently influenced the detailed pattern for their space planning. Even though the Soviets have achieved "firsts" in:

1) Establishment of an artificial earth satellite

2) Rocketing past the moon and placing a vehicle into a solar orbit

3) Hard impact on the moon

4) Photographing the side of the moon not visible from the earth

5) Safely returning mammals and men from orbit

it seems obvious that the Soviet attempts to score "firsts" will continue.

Although large orbiting spacecraft appear to be the prime Soviet technical objective during the period of this estimate, it is believed they will continue to use and improve their current lunar probe capability since there are many "firsts" yet to be accomplished in the exploration of the moon. These include lunar satellites, lunar soft landings, lunar soft landings and return with actual samples of the lunar surface, and, finally, a tankette for a true lunar exploration.

It is expected that the Soviets will continue to launch unmanned lunar rocket probes for the purpose of reconnoitring the moon and near moon environment for the application of this knowledge to the development of manned lunar exploration systems.

Since soft landings are essential for obtaining data on the lunar surface, it is believed that the Soviets definitely will have to develop techniques for achieving lunar soft landings, especially soft landings and return to earth, to establish the procedures to be employed in accomplishing the main objective of establishing a manned lunar station. The first of these test vehicles could be very similar to their Arctic automatic weather stations that presently are jettisoned from aircraft. This vehicle would be able to record temperature, micrometeorite impact, various types of radiation, particle concentration, seismic disturbances, solid resistivity, and depth of probe penetration. As landing techniques are improved, larger payloads with increased instrumentation for terminal control and lunar restart and launch capabilities will undoubtedly be developed.

Circumlunar flights by manned space vehicles, and eventually lunar landings, will be required in order to know more precisely the environmental situation preliminary to the eventual establishment of a lunar base and the complete conquest of this body. This is considered to be a more distant objective of the Soviet program and its attainment will appear, if at all during this decade, toward the end of the period.

Although the landing of a "tankette" on the moon falls under the category of a soft landing, the size and weight of such a vehicle makes it a sufficiently worthy subject for special consideration. The Soviets have published extensively on such a vehicle, and Yu D. Khelbtsvlch, Chairman of the Science Technical Committee for Radio Remote Control of Cosmic Rockets, has published his preliminary design of a tankette laboratory for lunar exploration. Graduate students of Moscow High Technical School now are experimenting with models of a tankette in layers of powdered cement to simulate powdered soil conditions which might be expected on the moon.

Actual accomplishment of the project will have to await the availability and flight testing of the new booster with thrust in the millions of pounds category in the 1965 time period.

The Soviets do not differentiate between military and non-military space systems. They have talked of a peaceful intent of their space program but there are many pounds of payload in their satellites which cannot be accounted for on the basis of data given out. It should be presumed that this could be military payloads. With this in mind, it can be stated that during the early 1970's it is possible that space weapon systems will be developed as a supplement to earth-based delivery systems. It is also possible that military facilities may have been established on or in orbit around the moon. Atmospheric and climatic conditions will demand an air conditioned environment for moon-based delivery systems. For increased survival security and decreased requirements for "imported" construction material, it seems reasonable to assume that these would be constructed under rather than above the moon's surface.

Appendix #1 - Glossary

Cargo Package

  • The Lunar Cargo Package (See Figure A-1, item e) is that part of the Cargo Payload which represents a package consisting of supplies, equipment, etc., needed on the lunar surface. Preliminary design data implicates that an amount in excess of 40,000 pounds must and can be delivered to the lunar surface.
Cargo Payload
  • The Cargo Payload is that part of the Lunar Transport Vehicle which in placed on a selected lunar trajectory and is boosted to earth escape velocity. It consists of two major parts. These are:
    • Lunar Landing Stage
    • Cargo Package

  • This division is schematically represented in Figure A-1 by the parts labelled b and e. The cargo payload does not include a Lunar Launch Stage since the cargo package remains on the lunar surface. The weight of the Cargo Package is equivalent to the combined weight of the Lunex Re-entry Vehicle (3 men) and the Lunar Launch Stage. The Cargo Payload weighs 134,000 pounds at earth escape.
  • A highly elliptical trajectory that goes around the moon and returns to the earth.
Circumlunar Propulsion stage
  • A stage attached to the Lunex Re-entry Vehicle to provide a suitable propulsion and control capability for maintaining the Re-entry Vehicle on a circumlunar trajectory.
Delayed Procurement Concept
  • Concept of deferring the final ordering and production of high-cost insurance type spares until maximum flight experience is available.
Hi-Speed Re-entry Test 
  • A test program using a special Re-entry Test Vehicle designed to obtain fundamental re-entry data and specific configuration data am re-entry velocities of 25 to 45 thousand feet per second.
Lunar Expedition Facility
  • A facility designed to be constructed under the lunar surface and to support the Lunar Expedition. This facility will be designed so that it can be readily expanded to support future military requirements.
Lunar Landing Stage
  • The Lunar Landing Stage is that part of the Manned Lunar Payload that will land the Manned Lunar Payload at a selected site on the surface of the moon. The expended portion of this stage is left on the lunar surface when the Lunex Re-entry Vehicle is launched for the return trip to earth (See Figure A-1, item b.).
Lunar Landing Stage - Cargo
  • The Lunar Landing Stage of the Cargo Payload (See Figure A-1, item b) is identical to the landing stage of the Manned Lunar Payload. It provides the capability of soft landing the Cargo Package at a preselected site. The Cargo Payload is unmanned and the landing operation is automatic. The Lunar Landing Stage remains on the lunar surface with the Cargo Payload.
Lunar Launch Complex
  • The Lunar Launch Complex consists of the base facilities, integration buildings, checkout buildings, launch pads, propellant manufacturing plants, the complex control centre and all of the equipment required to earth launch and support the Lunar Expedition.
Lunar Launching Stage
  • The Lunar Launch Stage (See Figure A-1, item c) is that part of the Manned Lunar Payload that will boost the Lunex Re-entry Vehicle to lunar escape velocity on a moon-to-earth trajectory. It will be ejected prior to earth re-entry.
Lunar Team
  • The Lunar Team consists of Air Force technical personnel from various Air Force System Command organisations and the various Air Force Command organisations. This team was formed to assist the SSD in establishing a sound Lunar Expedition program. The membership during the past two years has varied from 30 to 50 personnel.
Lunar Transport Vehicle
  • The Lunar Transport Vehicle is required to transport men and materials for the Lunar Expedition. The Lunar Transport Vehicle consists of a Space Launching Vehicle and one of two payloads. One payload is the Manned Lunar Payload and the other is the Cargo Payload (See Figure A-1).
  • Lunex is a short title for the Lunar Expedition Program
Lunex Program Director
  • The Lunex Program Director is the individual responsible for directing and controlling all facets of the Lunar Expedition Program.
Lunex Re-entry Vehicle
  • The Lunex Re-entry Vehicle (See Figure A-1, item d) is the only part of the Manned Lunar Payload that returns to the earth. It carries three men and all the necessary life support, guidance, and communication equipment that is required. It re-enters the earth's atmosphere and uses aerodynamic braking to slow down and land like a conventional airplane. The preliminary design of the Lunex Re-entry Vehicle calls for a vehicle 52 ft. long with a return weight of 20,000 pounds.
  • A vehicle, or system is considered to be "man-rated" when sufficient ground and flight test data has been accumulated to determine that the reliability objectives for the item have been achieved and that the abort system satisfactorily compensates for the inherent unreliability of the system.
Manned Lunar Payload
  • The Manned Lunar Payload is that part of the Lunar Transport Vehicle which is placed on a selected lunar trajectory and is boosted to an earth escape velocity of approximately 37,000 feet per second. It consists of three major parts. These are:
    • Lunar Landing Stage 
    • Lunar Launch Stage 
    • Lunex Re-entry Vehicle (3 men)

  • This division is schematically represented in Figure A-1 by the parts labelled b, c, and d. The complete Manned Lunar Payload weighs 134,000 pounds at earth escape.
Responsive Production Concept
  • A concept whereby long lead portions of high-cost operational spares are purchased unassembled to reduce costs until final decision is made on spares procurement.
Space Launching System
  • The complete system, including ground faculties, propellant manufacturing facilities, etc., as required to launch the boosters required for space operations.


  • A term used to describe the Aerospace Ground Environment required for a specified system.
Abort System
  • The Abort System includes all the equipment required to remove, or return the crew members of the Lunex Re-entry Vehicle to a position of safety in the event of a malfunction of the Lunar Transport Vehicle.
  • P.E.P. are the initials for "Program Evaluation Procedure". It is a management tool which uses an electronic digital computer. It has the capacity to handle large masses of date quickly. The PEP system provides information that will enable the Lunex Program Director to quickly identify, locate, and consequently, correct program trouble spots.
  • A term used to describe Qualitative and Quantitative Personnel Requirements Information that is required to properly plan for personnel training.
  • A term meaning Real Property Installed Equipment that is synonymous with Technical Facilities. Technical Facilities are those structural and related items which are built and/or installed by the Corps of Engineers and then turned over to the Air Force or an Air Force contractor.
USAF Lunar Chart 
  • A chart prepared to a scale of 1:1,000,000 and covering the lunar surface. Present plans call for the preparation of 144 individual charts to cover the complete lunar surface.


  • BOSS is the designation for "Biomedical Orbiting Satellite System". The BOSS program uses primates to provide life science data for designing manned space systems.
  • The SAINT program will develop and demonstrate orbital rendezvous and satellite inspection techniques. It will further demonstrate the capability of closing, docking, and refuelling.


Back to Index
Last update 12 March 2001.

Contact Mark Wade with any corrections or comments.
Conditions for use of drawings, pictures, or other materials from this site..
Mark Wade, 2001